The Magnetic Phase Diagram of CuB₂O₄

Meng-Jung Hsieh¹, Chun-Hao Lai², Chao-Hung Du³, and Jiunn-Yuan Lin¹

¹Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan ²Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan ³Department of Physics, Tamkang University, Tamsui, New Taipei City 25137, Taiwan

Copper metaborate CuB₂O₄ attracts researcher's concerns due to the particular magnetic structures and other physical properties. CuB₂O₄ was known to have complex magnetic orderings at both $T_1 = 21$ K and $T_2 = 10$ K, especially for the lower temperature one. [1] The nature of both ordering remains not fully elucidated. Very recently, the isotope effect on the electronic structure of CuB₂O₄ has been revealed. [2] Therefore, a deep understanding of CuB₂O₄ is called for to further manipulate the ground state of CuB₂O₄. In this work, we utilize the heat capacity and magnetic fields. The preliminary heat capacity data in low fields in Fig. 1 reveal that the ordering at T_2 is of the antiferromagnetic nature. Furthermore, a magnetic crossover below T_2 at zero field has the tendency to have a field-induced long range ordering. More comprehensive results will be presented to have a complete picture of magnetic phase diagram of CuB₂O₄.

Fig. 1 The heat capacity of CuB_2O_4 at zero field, 0.5 T, and 1 T.

References

[1] M. Boehm et al., Phys. Rev.B 68, 024405 (2003).

[2] Rea Divina Mero et al., ROYAL SOCIAL OF CHEMISTRY Adv. 10, 41891–41900 (2020).