Ferromagnetic Fluctuations in Heavily Overdoped Bi-2201 cuprates

T. Adachi¹, Y. Komiyama¹, K. Kurashima², S. Onishi¹, H. Kuwahara¹, H. Kuroe¹,

D. P. Sari^{3,4}, I. Watanabe⁴, A. Koda⁵, R. Kadono⁵, T. Kawamata², Y. Koike²

- ² Dept. of Appl. Phys., Tohoku University, Sendai, Japan
- ³ College of Eng., Shibaura Ins. Tech., Saitama, Japan
- ⁴ RIKEN Nishina Center, Wako, Japan
- ⁵ Institute of Materials Structure Science, KEK, Tsukuba, Japan

It has been theoretically proposed that a ferromagnetic (FM) phase exists and is related to the suppression of superconductivity in the heavily overdoped (HOD) regime of the hole-doped high- T_c cuprates [1]. In non-superconducting HOD La-214 cuprate, three-dimensional FM fluctuations have been suggested from muon-spin-relaxation (µSR) and transport measurements [2]. The FM fluctuations/order have also been suggested in HOD Bi-2201 from RIXS [3] and in heavily electron-doped La_{2-x}Ce_xCuO₄ from transport and magnetic measurements [4]. In this talk, we review our results of the two-dimentional FM fluctuations in HOD Bi-2201 cuprates [5,6].

We found in HOD Bi-2201 that the magnetization curve tended to be saturated in high magnetic fields at low temperatures, suggesting the precursor phenomenon toward a possible FM transition at a lower temperature. μ SR measurements revealed that spin fluctuations are developed at low temperatures in HOD Bi-2201. The abplane electrical resistivity, specific heat and magnetic susceptibility χ of HOD Bi-2201 exhibited temperature dependences characteristic of a metal with two-dimensional FM fluctuations. All these results suggest that two-dimensional FM fluctuations exist in the HOD regime of Bi-2201, suggesting the universality of FM fluctuations in the HOD regime of the high- T_c cuprates.

We also investigated the Fe-substitution effects on FM fluctuations in HOD Bi-2201 [6]. The χ exhibited hysteresis between the zero-field and field cooling at low temperatures, suggesting the formation of spin-glass state. The muon-spin relaxation rate and χ were enhanced by the Fe substitution. The effective Bohr magneton estimated from χ was larger than that of a bare Fe³⁺ spin, suggesting the Fe-induced enhancement of FM fluctuations. We propose the formation of FM spin clusters around each Fe, which is in contrast to antiferromagnetic spin clusters suggested in Fe-substituted Bi-2201 in the overdoped regime [7].

The origin of FM fluctuations in the HOD regime of the hole-doped cuprates would be the itinerant ferromagnetism due to the Fermi-surface nesting and the large density of states or would be the localized ferromagnetism due to the double exchange interaction relating to the Cu3d_{x^2-y^2} and Cu3d_{$3z^2-r^2$} orbitals.

References

[1] A. Kopp et al., Proc. Natl. Adad. Sic. USA 104, 6123 (2007).

- [2] J. E. Sonier et al., Proc. Natl. Adad. Sic. USA 107, 17131 (2010).
- [3] Y. Y. Peng et al., Phys. Rev. B 98, 144507 (2018).
- [4] T. Sarkar et al., Science 368, 532 (2020).
- [5] K. Kurashima et al., Phys. Rev. Lett. 121, 057002 (2018).
- [6] Y. Komiyama et al., J. Phys. Soc. Jpn. 90, 084701 (2021).
- [7] H. Hiraka et al., Phys. Rev. B 81, 144501 (2010).

¹ Dept. of Eng. & Appl. Sci., Sophia University, Tokyo, Japan